™ |

Check for
updates

Research Article Vol. 12, No. 11/1 Nov 2021/ Biomedical Optics Express 7199 |

Biomedical Optics EXPRESS P

Refined prefrontal working memory network as
a neuromarker for Alzheimer’s disease

EuNHO Kim,"7 JIN-Woo Yu,':” BomiN Kim,! SuNG-Ho Lim,*:2
SANG-Ho LEE,® KwANGSU Kim,* GowoON SoN,* HYEON-AE
JEON,2*4 CHEIL MOON,2:34 JOON SAKONG,?:® AND JI-WOONG
CHoi':2"

! Department of Information and Communication Engineering, DGIST, Daegu 42988, Republic of Korea
2Brain Engineering Convergence Research Center, DGIST, Daegu 42988, Republic of Korea

3 Convergence Research Advanced Centre for Olfaction, DGIST, Daegu 42988, Republic of Korea
4Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Republic of Korea

3 Department of Occupational and Environmental Medicine, Yeungnam University Hospital, Daegu 42415,
Republic of Korea

6 Department of Preventive Medicine and Public Health, College of Medicine, Yeungnam University, Daegu
42415, Republic of Korea

7These authors equally contributed to this work
“jwchoi@dgist.ac.kr

Abstract: Detecting Alzheimer’s disease (AD) is an important step in preventing pathological
brain damage. Working memory (WM)-related network modulation can be a pathological feature
of AD, but is usually modulated by untargeted cognitive processes and individual variance,
resulting in the concealment of this key information. Therefore, in this study, we comprehensively
investigated a new neuromarker, named “refined network,” in a prefrontal cortex (PFC) that
revealed the pathological features of AD. A refined network was acquired by removing unnecessary
variance from the WM-related network. By using a functional near-infrared spectroscopy (fNIRS)
device, we evaluated the reliability of the refined network, which was identified from the three
groups classified by AD progression: healthy people (N=31), mild cognitive impairment (N=11),
and patients with AD (N=18). As a result, we identified edges with significant correlations
between cognitive functions and groups in the dorsolateral PFC. Moreover, the refined network
achieved a significantly correlating metric with neuropsychological test scores, and a remarkable
three-class classification accuracy (95.0%). These results implicate the refined PFC WM-related
network as a powerful neuromarker for AD screening.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative brain disease that causes gradual cognitive
decline [1]. Pathological progression of AD precedes symptomatic presentation [2]; thus the
functional/structural damage caused by AD accumulates for several years before diagnosis [2,3].
As this damage is currently incurable, strategies have been designed to delay the progression of
AD at an early stage, to prevent cognitive impairment [3—5]. Mild cognitive impairment (MCI)
is defined as a mental state with minor cognitive decline, which is often considered preclinical
AD [6-9]. Therefore, to provide a medical intervention before irreversible damage affects the
patients, early detection of the AD pathology is important [3,10,11].

One of the initial characteristics of AD pathology is the dysfunction of working memory
(WM) [12-13], the part of memory that provides temporary storage and manipulation of the
information required for performing various cognitive tasks [14]. Cognitive degeneration, such
as WM decline, is known to have a close relationship with the alteration of the brain network
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[15—17]. Changes in brain networks caused by AD pathology have been frequently investigated
to provide useful evidence for the pathological properties [18,19].

Functional connectivity (FC) is a temporal correlation in brain activity between different brain
regions, which is an effective indicator of an individual’s brain network [20-22]. In a recent study,
FC gained interest as a neurological biomarker (neuromarker) because its variance was largely
determined by stable individual properties, rather than trial variations [23-25]. Moreover, it was
reported that task-induced FC provided more detailed information about individual cognitive
abilities than resting-state FC [26,27]. Therefore, through the change in task-induced FC, recent
functional imaging studies showed a better understanding of the decline in the WM ability of
patients with AD pathology [28], and attempted to detect AD in the early stage [29].

However, task-induced FC includes trivial FC variance that covers the FC changes triggered
by the task; individual characteristics can yield FC variances [30,31]. A variety of untargeted
processes, other than the actual targeted cognitive process, may also influence the task-induced
FC [19,32]. As unrelated cognitive processes or physiological noise inflate the FC estimation, a
previous study tried to attenuate the unrelated cognitive process from the task-induced FC [33].
This process prevents possible distortion through cognitive processes, rather than from those that
caused by AD. Therefore, for a reliable AD detection, we refined the FC to prevent data unrelated
to AD pathology affecting the result of the screening.

In this study, we focused on the pathological alteration of the prefrontal cortex (PFC) of AD.
The PFC contains the core network of the WM process, including the default mode network
and fronto-parietal network, which are known to be damaged in AD pathology [34,35]. The
alteration can be detected by functional near-infrared spectroscopy (fNIRS) [36-38]. As fNIRS
has various advantages, such as low measurement cost and high portability [39,40], there have
been many attempts to screen AD through fNIRS signal-based biomarkers [29,41-46]. Li et
al. demonstrated that the concentration changes of oxy-hemoglobin (AHbO) signal was highly
correlated to a neuropsychological test result, the mini-mental state examination (MMSE) score
[43]. Another study reported that the AHbO concentration score in PFC could be a good indicator
for classifying patients with MCI and healthy older adults [29,44—46].

Although the fNIRS-measured biomarker has been successful in classifying AD as well as in
inferring simple cognitive indices with high accuracy, there are still problems to be solved. Early
AD is well known for its marked decrease in memory and executive function, including WM. For
a proposed biomarker to well characterize AD, the sensitivity affected by the inference of specific
cognitive functions, such as memory or executive function, should be reviewed. Furthermore,
due to the nature of neurodegenerative diseases, AD biomarkers need to be validated on a broad
spectrum of AD pathologies for continuous therapeutic monitoring.

Therefore, we aimed to comprehensively investigate whether the unrelated variance removed
brain network, named the refined network, was a good biomarker that inferred multiple cognitive
functions from the pathological changes in AD, and further support the high classification
performance. We hypothesized that a refined network estimated from PFC by using fNIRS could
be a helpful AD neuromarker for the early detection of AD pathological change and multi-domain
cognitive state.

To verify our hypothesis, we designed two WM tasks, and corresponding control tasks, to
estimate the WM-unrelated FC variance of WM task. We eliminated FC variances from FC
maps obtained during WM tasks by subtracting FC maps obtained during control tasks. From
the variance removed FC map, the “refined” PFC WM-related network was identified. Next,
we investigated whether the refined WM-related network improved the performance of the
three-class classifications: healthy control (HC), patients with MCI, and patients with AD.
However, the process of refining the network may cause the elimination of proper individual
features. Therefore, to evaluate whether personal features related to cognition were adequately
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preserved, we confirmed the effect of the refining method of the WM-related network on the
prediction of cognitive scores.

In this study, we achieved a high accuracy for AD pathological state classification and prediction
performance for cognitive scores. Our results show that a refined WM-related network is a
powerful neuromarker for disease detection and assessing cognitive abilities. These results
suggest that early detection of AD with a sufficient level of clinical accuracy is possible through
the prefrontal fNIRS device. Thus, this study may contribute to improving the quality of lives of
many potential patients with AD in the future.

2. Materials and methods
2.1. Participants

For the experiment, 18 patients with AD [77.8 + 6.6 years, 4 males (M)/14 females (F), education
4.4 + 3.8 years, clinical dementia rating (CDR) score 1.08 + 0.65, Korean version of the mini-
mental state examination (K-MMSE) score 19.4 + 6.2] and 11 patients with MCI [78.2 + 5.4 years,
2M/9F, education 3.2 + 4.8 years, CDR score 0.95 + 0.61, K-MMSE score 21.0 + 4.7] participated
in this study. All patients were recruited from a local adult day-care center in Daegu, South
Korea. Diagnostic records were used to evaluate each participant’s AD pathological condition.
Participants comprising a control group [75.9 + 4.6 years, 3M/28F, education 5.7 + 2.6 years,
CDR score 0.45 +0.33, K-MMSE score 25.3 +2.7] were recruited from the local community in
Daegu, South Korea. For all recruited participants, medical examination, K-MMSE [47], and
CDR [48] were provided by Yeongnam University Medical Center. The demographics of the
three groups are described in Table 1. All participants took no psychiatric medications or had
any medical history of neuropsychiatric disease except MCI and AD. They also did not have
severe vascular disease, which can cause hemodynamic dysfunction. There were no significant
differences (p>0.05) in sex ratio (p=0.48, x22=1.49, Kruskal-Wallis test), education (p=0.11,
F357=2.30, one-way ANOVA), or age (p=0.33, F> 57=1.14 one-way ANOVA) between the groups.
There were significant differences in the CDR score (p<0.001, x%,=15.95, Kruskal-Wallis test)
and K-MMSE score (p<0.001, F,57=11.29, one-way ANOVA). This research process was
approved by the DGIST Institutional Review Board (DGIST-190401-HR-007-02). Before the
experiment, all participants and their guardians were informed of the purpose of the experiment,
process, and procedure and signed a consent form for the experiment.

Table 1. The demographics of HC, MCI, and AD groups

Demographics HC (N=31) MCI (N=11) AD (N=18) p value
Age (years)? 759+4.6 782+5.4 77.8+6.6 0.33

ex (Male/Female)“ 3/28 2/9 4/14 0.48
Education (years)” 57+2.6 32+48 44+38 0.11
CDR score® 0.45+0.33 0.95+0.61 1.08 £0.65 <0.001¢
K-MMSE score” 253+2.7 21.0+4.7 19.4+6.2 <0.001¢

HC: healthy controls; MCI: mild cognitive impairment; AD: Alzheimer’s disease
“The p values representing significant differences (p<0.05).

bThe p value was calculated by one-way ANOVA.

“The p value was calculated by Kruskal-Wallis test.

2.2. Experimental procedure

During the experiment, all participants underwent a cognitive examination and three fNIRS
measurement sessions. All sessions were conducted in a quiet room. To avoid contamination of
the resulting data with fatigue, each experimental session occurred at least one week apart.
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In the cognitive examination, a neuropsychological test battery, called the Seoul Neuropsy-
chological Screening Battery-Second Edition (SNSB-II) [49], was performed on all participants
by qualified neuropsychologists, to evaluate each participant’s WM ability. The SNSB-II is a
test battery used for the clinical diagnosis of dementia in Korea. It includes several standard
cognitive tests that are re-standardized according to the Korean age and education cohort (see
Table S1). The SNSB-II aggregates the results of various standard cognitive tests and provides
cognitive scores for five cognitive domains: attention, language, memory, visuospatial function,
and frontal executive function. The WM ability noted in this study was primarily assessed via
memory and frontal executive function domain scores.

The hemodynamic signals in the PFC were measured during the WM task through an fNIRS
device. For fNIRS measurements, all participants performed two different WM tasks: Delayed
Match-To-Sample (DMTS) task [15] and Digit Span Test (DST) [38], via the touchscreen at
eye-level height. All participants were asked not to move their heads as much as possible, not
to speak, and to focus on the screen before the measurement started. Between the two tasks,
participants removed the device from their heads and rested for at least 10 min. Each task
consisted of 15 WM trials and 15 control trials. Between each trial, a 10-s inter-stimulus interval
(ISI) was inserted, as in previous studies, for a clear separation of the brain signal from each trial,
avoiding long sessions causing mental fatigue in patients with AD [38,43]. Before the first trial
of each task, a description of the task and a sufficient number of practice trials were provided
(Fig. 1(A)). The WM trial was designed to provide a WM load. The WM trial consisted of three
steps: 5 s of an encoding phase, 5 s of a maintenance phase, and 10 s of a retrieval phase. The
control trial consisted of a 10 s control phase mimicking the retrieval phase of WM trials, without
a WM load, to estimate the baseline bias caused by non-WM processes (Fig. 1(B)).
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Fig. 1. Experimental design for the fNIRS measurements. (A) The timeline of the WM task.
(B) The structure of two trial types, WM trial and control trial, and the stimulus example per
two WM tasks: DMTS and DST. (C) A schematic diagram of fNIRS channels with different
SDD. (D) The source-and-detector configuration of NIRSIT with BAs and 10-10 system
reference position. BAs: Brodmann areas; DMTS: Delayed Match-To-Sample task; DST:
Digit Span Test; fNIRS: functional near-infrared spectroscopy; NIRSIT: portable wearable
continuous-wave fNIRS device
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In the WM trial of the DMTS task, participants performed a visual-based memory recall task
using a set of images inspired by the Benton Visual Retention Test [50] as visual stimuli. In the
encoding phase of the WM trial, an image was randomly selected from the set as a stimulus and
shown on the screen. Participants were asked to remember the stimulus. During the maintenance
phase, they were asked to keep staring at the point located at the center of the screen. In the
retrieval phase, participants were asked to identify which of the four images were shown during
the encoding phase. The control trial of the DMTS task used four images, composed of a simple
shape, as stimuli. During the control phase, participants were instructed to look for a star shape
among the other shapes presented. In the WM trial of DST, participants performed a verbal-based
memory retrieval task that used sequences of 2—4 digit numbers as a stimulus instated of images.
In the control trial, they were instructed to type the number that appeared on the touchscreen.
Regardless of the task, participants were asked to look at the screen during all ISI (Fig. 1(B)).
The study was only executed on participants who were able to successfully follow the instruction
and perform at least 10 WM trials and 10 control trials in both tasks, across all sessions.

2.3. fNIRS device

A portable wearable continuous-wave fNIRS device (NIRSIT, OBELAB, Seoul, Korea) was
used in this study [51]. NIRSIT uses a channel consisting of one source and one detector for
measurement. The source emits near-infrared light at wavelengths of 780 nm and 850 nm that can
penetrate the skull. The detector records the light’s attenuated intensity from the source, scattered
by the inner structure of the human forehead, at a sampling rate of 8.138 Hz. Each channel can
measure the brain signals coming from different depths according to source-detector distance
(SDD) (Fig. 1(C)). NIRSIT consists of 24 sources and 32 detectors providing 204 channels with
different SDDs over 1 cm, which are capable of measuring brain hemodynamic signals [52,53].
The configurations of all channels are presented in Figure S1. Although multiple channels share
the same source or detector, the signal processing techniques used in the device enable each
channel to acquire a signal at the same time.

NIRSIT was worn on the participant’s forehead. FPz of the international 10-10 system was
used as a reference point for putting on the device. The sources’ and detectors’ locations on the
device and the Brodmann areas (BA), measurable with the device (BA 9, BA 10, BA 45, and BA
46), are shown in Fig. 1(D). Each location of BA was estimated by mapping the reference point
and channel positions on the ICBM-152 template. In this study, we divided BA9 into lateral BA9
(Lat. BA9) and medial BA9 (Med. BA9) according to the location for the detailed description of
the BA9 area.

2.4. Signal preprocessing

During the task execution, the fNIRS device measured optical density (OD) signals. For each
channel, a signal-to-noise power ratio (SNR) was calculated using the power ratio of the OD
signal to the noise. Signals from channels with low SNR (<10 dB) were rejected.

It should be acknowledged that the OD signal could be distorted by motion artifacts and
baseline drift. Motion artifacts mainly occur when the sensor slips due to head movement. In our
experiment, the task was designed to be performed with a touch screen to prevent the participants
from moving their heads to see the keypad. Moreover, a portable fNIRS device, NIRSIT, which
is stable against the effects of head movement was also used. Therefore, there were not many
motion artifacts in the signal, and they were corrected for in the OD signal with the spline
interpolation. However, baseline drift can be caused by the short ISI of 10 s. Due to the nature of
the hemodynamic response, the short (<20 s) ISI may induce baseline bias due to undershoot
[29,44], although a previous study showed that the undershoot did not occur significantly at short
ISI of 10 s [43]. To prevent a false positive rate inflation of FC due to the distortion, systematic
baseline drift was eliminated by 4th-order polynomial detrending from OD (Fig. S2).
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The corrected OD signals were converted into AHbO and concentration changes of deoxy-
hemoglobin (AHbR) via the modified Beer-Lambert law. The AHbO and AHbR signals were
filtered by a Butterworth band-pass filter with a 4th-order infinite impulse response in the
0.009-0.2 Hz bandwidth to remove physiological noise. Since the concentration change is a
relative value, the average of hemodynamic response signal for 20 s before the start of the task
was selected as the baseline.

2.5. Hemodynamic response analysis

Prior to identifying WM-related networks, it was necessary to verify that the hemodynamic
response elicited by the WM process were being measured. First, we extracted block-averaged
AHbO and AHDR signals per participant. Channels that showed an average signal over the
retrieval phase that differed significantly from the baseline in all participants were selected as
channels of interest (COI) through one-tailed, one-sample #-test. The right tailed test was used
for the AHbO signal and the left tailed was used for the AHbR signal.

To compare the hemodynamic response of each task group, the signal from each COI was
averaged. The group effect was evaluated by one-way ANOVA of averaged COI signal over
retrieval phase. Multiple comparisons were performed to evaluate the effect by group, corrected
with Tukey-Kramer post hoc test. The p value threshold of statistical significance is 0.05.

2.6. WM-related network extraction and refinement

In previous studies, significant differences in the PFC between patients with MCI and HC were
found in the retrieval phase [37,54]. In addition, the AHbO signal is considered a more reliable
metric, with a stronger correlation with the fMRI signal than the AHbR signal [55]. Therefore,
the AHbO signals generated during the retrieval phase and the control phase were used for
WM-related network analysis. To calculate the FC for each trial, we extracted the AHbO signals
generated during the retrieval phase and the control phase. When extracting the signal, an offset
of 2 s after the end of the phase was additionally included in consideration of the hemodynamic
delay. Thus, we extracted a 12 s signal of AHbO hemodynamics from each trial. Signals extracted
from “failed” trials were discarded (Fig. 2(A)).

From each trial, the FC was calculated through Pearson’s correlation of time-series signals
between each channel to characterize the brain network. For each trial, diagonal elements and
duplicates were removed from a correlation matrix, and FC maps were obtained with a total of
20,706 connectivity values. The FC map of each trial was averaged according to the task (DMTS
task and DST) and trial types (control and WM) to estimate a robust correlation coefficient of
the full time-series in extracted phase (retrieval and control phased). In theory, this averaging
process is equivalent to Pearson’s correlation of full time-series from the retrieval phase if the
mean and standard deviation between trials were the same (see Supplement 1). Therefore, the
averaging process strongly corrected for values that distort Pearson’s correlation coefficient, such
as trial-wise artifacts that have not been removed. The averaged FC map was normalized using
Fisher Z transformation for statistical testing. Through this process, the WM FC, which is a
WM-related FC map with task-unrelated variance, and control FC, which is an estimation of
task-unrelated variance included in WM FC, were obtained per task, following the trial type. To
eliminate fluctuations not related to the task, the contrast FC, which was obtained by subtracting
the control FC from WM FC, was calculated (Fig. 2(A)).

To identify WM-related networks, we obtained the significant connectivity involved in the WM
process for each disease condition. The significant connectivity was identified by a one-sample
t-test performed with the participants’ FC maps on each group. We extracted a Boolean matrix
with edges exceeding a significant threshold (p=0.05) from the #-test results of each group. The
WDM-related network may be altered as the disease progresses. Therefore, the Boolean matrix
of each group aggregated to the selected WM-related FC mask through Boolean OR operator.
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The edge selection mask was thus the same in all participants (Fig. 2(B)). A refined WM-related
network was obtained by masking the contrast FC, the removal of task-unrelated variance from the
connectivity map, with aggregated Boolean matrix. To compare the network refining effect with
the conventional metric, we identified and extracted the network edges with the same procedure
for two conditions without the variance removal process. A raw network was extracted from
the unmodified WM FC, conventional functional connectivity map. A zero-mean network was
extracted from the zero-mean FC, calculated by subtracting the mean of the WM FC from itself,
to adjust the average of functional connectivity value to zero (Fig. 2(A)).

2.7.  Similarity test for validation of refinement

To ensure that the WM-related network is reliable through variance removal, it is necessary
to confirm the variance estimation by using a control FC. A similarity test was conducted to
show that there was a WM-task-unrelated FC that was common between WM FC and control
FC. We examined whether the similarity calculated by Pearson’s correlation coefficient between
two FC vectors in participant-wise task FC and control FC was more similar compared to
other metrics. The tests were performed via one-way ANOVA, and multiple comparisons were
Bonferroni-corrected.
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2.8. WM network analysis

We investigated anatomical features of the refined networks for each task. First, we identified
anatomical locations of the edges that were strengthened or weakened when performing the task
from the extracted network. Significant edges of WM networks that can describe the memory
cognitive domain score were also classified. Permutation analysis of linear regression coefficients
was performed for the weight analysis of the linear support vector regression (SVR) model that
showed a statistically significant prediction performance in the memory domain. A total of 10°
permutations were performed. Next, using an empirical distribution of averaged-regression
coefficient following the permutation, we extracted (p<0.05) edges that significantly contributed
to memory domain score estimation.

Furthermore, a one-way ANOVA was performed to identify the edges showing significant
inter-group differences (p<0.05), and differences between three different group pairs (HC vs.
MCI, HC vs. AD, MCI vs. AD) in the extracted network. Multiple compared p values were
corrected by the Bonferroni correction.

2.9. Classification of disease state

We envisaged that the refinement of the WM-related network would remove the irrelevant
variance, better revealing the features of each pathological group. Therefore, we investigated
whether the disease classification performance for each network could be improved by applying
the refining method. An artificial neural network (ANN) model, using all of connectivity values
in the network as a feature set, was used to evaluate the classification performance of each
network. Because the number of selected edges differed, “zero-padding” was used to align
the number of input features extracted from the network to compare the performance of each
network using the same ANN model, without affecting the output of the neural network model.
In addition, the classification performance according to the structure of the ANN model was
also investigated for each network, as the structure of the ANN model that achieves the best
performance in each network may be different [56,57]. The five ANN model structures used in
this study are described in Table 2.

Table 2. The artificial neural network model structures

Numbers of Structure 1 Structure 2 Structure 3 Structure 4 Structure 5
Layers 2 2 3 3 3

Nodes in layer 1 68 128 128 256 512
Nodes in layer 2 16 16 48 48 96

Nodes in layer 3 16 16 16

To evaluate model performance, leave-one-out cross-validation (LOOCV) was used. In each
LOOCY loop, we formed 60 data sets with different test data. This was done by dividing the data
vector of the participants into a single participant’s data (as the test data), and the remaining 59
participants’ data (as training data). For the evaluation, the classification models derived from an
optimization procedure were used to evaluate the test data (Fig. 3(A)).

In the optimization procedure, the training data was subdivided into nine participants’ data (as
validation data), consisting of randomly selected three participants’ data from each pathological
group, and remaining training data of 50 participants for model optimization. The ANN model
was developed on the training set and optimized to maximize the classification performance of
the validation set to prevent overfitting of the model [58]. As the model performance may vary
depending on initial weights and selected validation data, a total of 30 models were trained to
statistically obtain the general classification results. Therefore, the test data was evaluated with a
total of 30 models, and their classification results were averaged (Fig. 3(B)).
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Fig. 3. Performance evaluation of cognitive score prediction performance and disease
stage classification. (A) LOOCY loop for performance evaluation. (B) The optimization
procedure of the classification model. (C) The optimization procedure of the regression
model. AD: Alzheimer’s disease; ANN: artificial neural network; LOOCYV: leave-one-out
cross-validation; HC: healthy controls; MCI: mild cognitive impairment; SVM: support
vector machine

As an outcome of 60 loops of LOOCYV, 60 test data evaluation results were obtained as a
model’s disease screening performance. Evaluation metrics including confusion matrix and
receiver operating characteristics (ROC) curve were used for the detailed assessment of the
model’s classification performance. The one-versus-rest method was used to obtain the ROC
curve and Macro-F1 score (see Supplement 1).

2.10. Prediction of cognitive scores

Even if the refinement helped to achieve a good performance in group classifications, there was
a possibility that the refinement of the WM-related network even removed useful individual
features. Therefore, we confirmed that refined FC also preserved or emphasized the information
on individual cognitive characteristics. The SVR algorithm was used to predict individual
performance scores. As it is known that nonlinear analysis techniques have advantages in
characterizing psychiatric disorders, such as Alzheimer’s disease [59], a non-linear regression
model was generated, and its performance was investigated.

Following the classification framework described above, LOOCYV was used for performance
evaluation. In each loop, the 60 participant’s data vector was divided into one test data and 59
training data. The test data were evaluated by the SVR model, which was trained and optimized
through the optimization procedure. A total of 60 loops were generated, and the performance of
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the final model was quantified as the Pearson’s correlation coefficient between the true value of
the test data and the model prediction result (Fig. 3(A)).

To choose an optimal set of parameters for the SVR model, an optimization procedure was
executed. The training data were subdivided into one validation data and 58 training data. The
SVR model was optimized with the subdivided 58 training data for one set of parameters. This
procedure was repeated 59 times. In each loop, hyperparameters C and y of the nonlinear SVR
were determined by a grid-search method to optimize the regression model. Optimal C and y
were searched for each of the 9 conditions (374, 373, ..., 33, 3%). The performance for each
parameter set was obtained and the highest performance parameter set was chosen (Fig. 3(C)).

We performed 10 permutations to evaluate the significance of the observed performance
of the model. The participants’ SNSB-II cognitive domain scores were randomly shuffled and
regressed according to the previous framework. This allowed the creation of the correlation
coeflicient distribution of the null model. The significance of the model’s performance was
statistically verified by a comparison with the coefficient distribution of the null model. The
significance of the model’s performance was statistically verified as follows; p = (1+Rank of the
observed correlation coeflicient) / (1+Permutation number).

3. Results
3.1. Behavior analysis

The cognitive ability score of the SNSB-II was collected to confirm the decrease in cognitive
ability with AD pathology. Group characteristics of the performance results for each domain of
SNSB-II are described in Table S2. The behavioral data, and accuracy and response time for the
task showed that the reduction in WM capacity had affected the task performance. Table 3 shows
the behavioral characteristics and SNSB-II cognitive ability score of each group.

In the behavioral data, three groups showed significant (p<0.05) differences in accuracy
(p<0.001, F57="7.83, one-way ANOVA) and response time (p=0.003, F; 57 = 6.46, one-way
ANOVA) in the DMTS task. On the post-hoc test, the accuracy of the HC group was significantly
higher than that of the MCI and AD groups (HC vs. MCI, p=0.002; HC vs. AD, p=0.006,
Tukey-Kramer post hoc test), but there was no significant difference between the MCI and AD
groups (p=0.987, Tukey-Kramer post hoc test). However, in terms of response time, the AD
group had a slower response time than the other two groups (HC vs. AD, p=0.003; MCI vs.
AD, p=0.039, Tukey-Kramer post hoc test), but there was no difference between the HC and
MCI groups (p=0.980, Tukey-Kramer post hoc test). In the DST, the three groups also showed
a significant difference in accuracy (p<0.001, F 57 =10.72, one-way ANOVA) and response
time (p<0.001, F57=19.39, one-way ANOVA). In the post-hoc test, the HC group showed a
significantly higher accuracy than the MCI and AD groups (HC vs. MCI, p<0.001; HC vs. AD,
p=0.003, Tukey-Kramer post hoc test), but no significant differences were observed between the
two groups, MCI and AD (p=0.608, Tukey-Kramer post hoc test). The response times showing
significant differences between each group had a similar trend as the accuracies (HC vs. MCI,
p<0.001; HC vs. AD, p<0.001; MCI vs. AD, p=0.953, Tukey-Kramer post hoc test).

Additionally, we identified group characteristics across the cognitive domains. All three
groups showed significant group effects in attention (7 57=8.20, p<0.001), visuospatial func-
tion (F357=3.44, p=0.039), memory (F57=20.78, p<0.001), and frontal executive function
(F257=11.63, p<0.001) domain scores in one-way ANOVA. In the post-hoc comparison, the
scores in the HC group were significantly higher than the scores in the MCI and AD groups in
attention (HC vs. MCI, p=0.002; HC vs. AD, p=0.018, Tukey-Kramer post hoc test), memory
(HC vs. MCI, p<0.001; HC vs. AD, p<0.001, Tukey-Kramer post hoc test), and frontal executive
function (HC vs. MCI, p=0.002; HC vs. AD, p<0.001, Tukey-Kramer post hoc test) domains.
The visuospatial function domain scores did not have any significant difference in multiple
comparison correction (HC vs. MCI, p=0.114; HC vs. AD, p=0.078; MCI vs. AD, p=0.987,
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Tukey-Kramer post hoc test). No significant differences were found in comparisons between the
other groups.

These results indicate a significant decrease in the WM capacity in the early stages of AD
pathology. This was similarly reflected in the cognitive domain scores related to WM, such as
attention, memory, and frontal executive function ability. As the severity progressed from MCI
to AD, most of the cognitive and behavioral scores related to WM, excluding the response time
of the DMTS task, decreased slightly. However, this difference was insignificant.

3.2.  Hemodynamic response during the WM task

We investigated the hemodynamic response magnitude of each task condition. Figure 4 is a
summary of the COI for hemodynamic responses in two WM tasks. In all cases, a task-related
hemodynamic response was observed. Group comparisons were conducted for the mean COI
hemodynamic response magnitude, which were obtained during the retrieval phase. In the
DMTS task, the AHbO concentration showed significant differences between groups (p=0.016,
F>57=4.44, one-way ANOVA). In post hoc analysis, the AHbO concentration was significantly
higher in the MCI group during the DMTS task than in the HC group (p=0.016, Tukey-Kramer post
hoc test). However, in the DST task, the AHbO concentration showed no significant differences
between groups (p=0.553, F>57=0.60, one-way ANOVA). Additionally, there was no significant
group effect in the AHbR concentration on the hemodynamic response magnitude during the
DMTS task (p=0.575, F57=0.56, one-way ANOVA) and DST task (p=0.831, F57=0.19,
one-way ANOVA).
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Fig. 4. Averaged COI hemodynamic response signal for each task (DMTS and DST)
and trial type (WM and control). The thick line represents the group-by-group mean of
hemodynamic response signal, and the shaded area represents the 95% confidence area.
DMTS: Delayed Match-To-Sample task; DST: Digit Span Test; WM: working memory; AD:
Alzheimer’s disease; HC: healthy controls; MCI: mild cognitive impairment; AHbO: change
in oxy-hemoglobin; AHbR: change in deoxy-hemoglobin.
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3.3.  Similarity test between WM FC and control FC

We examined whether the similarity calculated in participant-wise WM FC and control FC was
more similar than other metrics. First, the calculated similarity values were grouped into two
types based on whether the participants were the same (intra-participant: intra) or different
(inter-participant: inter). The grouped pairs were divided again into four subtypes of pairs
according to the same/difference in the task (DMTS task and DST) and trial type (WM and
control). We selected the closest pair in intra-participant (same task) and inter-participant (same
task and same trial type) for detailed analyses. Additional information of the pairs is described in
Table S3.

As shown in Fig. 5(A), the similarity of intra-participant was significantly higher than that of
inter-participant (p<0.0001). This trend was also seen in the comparison of subtypes between
intra-participant and inter-participant described in Fig. 5(B) (p<0.0001, between the closest pair
of intra and inter: p<0.0001, between other pairs of intra and inter: p<0.0001, between the
closest pair of intra and other pairs of inter: p<0.0001, between other pairs of intra and the closest
pair of inter). These results showed that there was a common FC trend within participants. When
comparing subtypes in intra-participant, the closest pairs had significantly higher similarity than
the other pairs (p<0.001). However, these features were not seen in inter-participant (p>0.05)
(Fig. 5(B)). This indicated that there was an intra-individual FC trend common between the WM
and Control FC maps.
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Fig. 5. Comparison of similarity test results for each type of pairs. (A) Result for all pairs
per intra-participant and inter-participant. (B) Results for the closest pair and the other pairs
in each case. A closest pair is a pair of the same task in the intra-participant, and a pair of
the same task and the same trial type in the inter-participant.

3.4. Anatomy of the WM-related network

We identified the anatomical distribution of the WM-related network. Overall, regardless of the
task, the dorsolateral PFC (DLPFC), across BA 46 and Lat. BA9, and the dorsomedial PFC
(DMPFC), across Med. BA9, seemed to form multiple significant edges with each other. During
the DMTS task, intra-hemispheric connectivity in the left hemisphere was enhanced significantly.
In contrast, the connectivity within the right hemisphere, right DMPFC and left DMPFC, and
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Fig. 6. Anatomical distribution of FC altered during the WM process. (A-B) Statistically
(p<0.05) enhanced (task-positive) and weakened (task-negative) FC in WM-related networks
when performing tasks. (C-D) Statistically (p<0.05) weighted FC in WM ability estimation
model among the WM-related FC. Lower triangular matrix shows the number of WM-
related FC. Upper triangular matrix shows the difference in number of positively (orange)
/ negatively (light blue) weighted FC from the pair of the BAs. BAs: Brodmann areas;
DLPFC; dorsolateral prefrontal cortex; DMPFC: dorsomedial prefrontal cortex; DMTS:
Delayed Match-To-Sample task; DST: Digit Span Test; FC: functional connectivity; WM:
working memory

between right DLPFC and left DMPFC were significantly decreased when performing the DMTS
task (Fig. 6(A)). Likewise, the DST task significantly strengthened the connectivity between
the left and right DLPFC. Additionally, the connectivity between the right DLPFC and both
DMPFCs was significantly enhanced. Conversely, the left frontopolar PFC, including BA 10,
showed a statistically significant decline in connectivity between both DLPFCs (Fig. 6(B)). The
anatomical distribution of the network edges, which are significantly related to the memory
ability, was also analyzed (Fig. 6(C), 6(D)). In both tasks, the edges contributing negative weights
to the memory score prediction were more concentratedly found in the inter-hemispheric regions
than in the intra-hemispheric regions. The FC formed between the left BA46 and right BA10
predicted a poor memory score. Conversely, FCs with positive weights were evenly distributed
over the PFC network.
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Fig. 7. Anatomical distribution of the FC differed during the AD pathological condition.
Edges showing statistically significant differences (p<0.05) among the WM-related FC
displayed. (A) Edges showing significant differences in DMTS. (B) Edges that become
stronger (orange) / weaker (light blue) as the AD pathological condition becomes more
serious in DMTS. (C) Edges showing significant differences in DST. (D) Edges that altered
as the AD pathological condition becomes more serious in DST. AD: Alzheimer’s disease;
BAs: Brodmann areas; DLPFC; dorsolateral prefrontal cortex; DMPFC: dorsomedial
prefrontal cortex; DMTS: Delayed Match-To-Sample task; DST: Digit Span Test; FC:
functional connectivity; WM: working memory; HC: healthy controls; MCI: mild cognitive
impairment.

We also investigated how group characteristics contributed to the distribution of network
edges. In the DMTS task, the DLPFC and DMPFC showed significant inter-group differences
in intra-regional and inter-regional connectivity (Fig. 7(A)). The DMPFC and DLPFC in the
right hemisphere recruited stronger connectivity in the HC group than in the other groups. In the
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MCI group, the left hemisphere connectivity was strongly recruited, but the right hemisphere
connectivity was relatively weak. (Figure 7(B)). Conversely, during the DST, the total number of
edges with significant group differences was less than that during the DMTS task. However, even
in DST, the DLPFC and DMPFC there were still areas with significant inter-group differences.
Interestingly, the differences between groups of features extracted from DST were particularly
strong in the left hemisphere (Fig. 7(C)). Compared to the HC and MCI groups, the AD group
showed strong connectivity in the DLPFC. Conversely, compared to the HC group, the MCI group
showed stronger left hemisphere connectivity and relatively weak right hemisphere connectivity
(Fig. 7(D)).

3.5. Disease state classification performance

To investigate the effect of the refining method on disease state classification, we evaluated the
classification performances of the ANN models trained by three kinds of networks that were
extracted from the FC with different individual unnecessary variance removal methods. Averaged
classification accuracies collected from 30 tests of five ANN structures, from each network,
are shown in Table 4. Each network showed a significant difference in the number of features
depending on whether individual variance was removed or not. The number of features of each
network was 35896 in the raw network, 39264 in the zero-mean network, and 5860 in the refined
network. Similarly, the classification performance depended on the network. The refined network
achieved the best value (95.0% accuracy), whereas the raw network and zero-mean network
achieved up to 58.5% and 57.7%, respectively. In all cases, the models using the refined network
as a feature showed higher classification accuracy than the models using the zero-mean network
and the raw network. However, the number of features was not the main cause of the difference
in accuracy. When the number of features was adjusted for equally, by adjusting the threshold
for edge selection, the overall accuracy trends were the same (See Table S4). Conversely, the
difference in accuracy evaluated by models using different structures was relatively insignificant.
In each network, the difference in the accuracy value between the models using different structures
showing the best accuracy and the lowest accuracy was only 4.8%p in the raw network, 4.2%p in
the zero-mean network, and 2.7%p in the refined network.

Table 4. Disease state classification accuracy

Network Structure 1 Structure 2 Structure 3 Structure 4 Structure 5
Raw 58.5%" 54.0% 56.7% 55.8% 53.7%
Zero-mean 57.7%" 57.2% 57.2% 57.5% 53.5%
Refined 93.7% 92.3% 95.0%" 93.7% 92.3%

“The highest classification score of each network.

We achieved the best classification performance from a model using structure 3 and the refined
network. Figure 8(A) shows the detailed results of the best performance classification. The
overall classification accuracy was 95.0%. The macro-averaged F1 score was 95.2%. The
binary classification performance between the two groups was also obtained. To calculate the
performances, we considered whether the data in the selected two groups were correctly classified.
The classification accuracy was 99.3% in HC vs. MCI classification (F1 score: 99.1%), 94.4% in
HC vs. AD classification (F1 score: 93.7%), and 89.9% in MCI vs. AD classification (F1 score:
89.6%). During the classification, some patients with AD were misclassified as HC.

Since the misclassification is unacceptable in disease screening, a detailed analysis was
conducted to determine whether these patients with AD could be classified correctly by adjusting
the classification threshold values. Figure 8(B) shows the ROC curve and area under the curve
(AUC) for each group. Although most data show outstanding classification results (AUC>0.9), a
few AD data, which were inaccurately classified as HC, were rarely classified accurately. For
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MCI, it showed an ideal classification performance (AUC=1). This result implies that MCI can
be completely distinguished from other groups.

3.6. Prediction performance of cognitive characteristics

To investigate the effect of the refined network on the prediction performance of an individual’s
cognitive ability, the prediction performances derived from three different network extraction
conditions were compared using the nonlinear SVR model. Figure 9(A) shows the Pearson’s
correlation coeflicient (r) between the predicted five cognitive domain scores and the true scores.
The refined network achieved the highest performance in the prediction of language (r=0.232,
p=0.025, permutation test), memory (r=0.609, p<0.001, permutation test), and frontal executive
function domains (r=0.436, p<0.001, permutation test). Meanwhile, the zero-mean network
achieved the highest prediction performance in the prediction of the attention (r=0.394, p<0.001,
permutation test) and visuospatial function domains (r=0.299, p=0.020, permutation test). In
the case of memory and frontal executive function, the refined network achieved dramatically
higher performance than the zero-mean network. Additionally, the raw network without any
refinement was inferior to the predicted performance of the refined and zero-mean networks
in all cases. The prediction results of each cognitive domain score are presented in Fig. 9(B),
using the best network that achieved the highest performance in each cognitive domain. The
prediction performances of the linear SVR model are shown in Fig. 9(C). In all cases, linear
regression was less predictive than nonlinear regression. In contrast to nonlinear regression, the
linear regression model did not achieve high performance excluding the memory domain score.

4. Discussion

This study showed that the prefrontal {NIRS can identify WM-related networks, which characterize
changes in AD pathological cognitive abilities and group effects. It also confirmed that eliminating
task-independent variances can enhance the performance of group classification by emphasizing
individual cognitive features related to the task. Importantly, local PFC cortical connectivity
strongly revealed individual and group clinical information. This fact suggests that the refined
PFC WM-related network is a feature that not only distinguishes AD pathological groups, but
also provides a good clue for personalized care.

4.1. WMe-related network contains the information of the WM process and AD patho-
logical alteration

In line with the converging evidence of a decline in WM capacity in MCI and AD, we confirmed
that the WM was exacerbated by AD through clinical and behavioral indicators [13,60]. We
also confirmed that the decrease in clinical memory indicators was significantly associated
with intra-hemispheric FC. This result is similar to the findings of a recent research that used a
connectome-based predictive model (CPM) to predict WM models of a group of older adults
comprising patients with AD and MCI [28]. The memory-inferior network edge, located in the
intra-hemispheric PFC, supports the compensation mechanism for functional compensation of
patients with AD pathology. As mentioned by Avery et al., patients in the AD stage appear to be
recruiting more hemisphere FC to compensate for their lowered functional abilities [28]. On the
other hand, the significant difference between the groups of the WM-related network, predicted
through refined FC, was found in a broader area than the important edge that infers cognitive
ability. As previously reported, significant differences occur primarily in the connectivity with
the DLPFC or DMPFC [61]. We also investigated the group-specific effects of the FC. The AD
group recruited higher right hemispheric connectivity than the MCI group in the DMTS task,
which is considered to compensate the injured brain network with recruiting additional resources
[62]. In the DST, hyperconnectivity due to compensatory action tended to appear in milder AD.
This may be because the decrease in the relative accuracy and response time of the AD and MCI
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groups, compared to the HC group, was larger in the DST than in the DMTS task, and thus the
demand for cognitive resources increased faster according to the severity of AD. We confirmed
that the hyperconnectivity in AD pathology reported in several previous studies [63,64] was also
reproduced in the fNIRS measurement.

4.2. Refining task-induced FC improves clinical characteristics

Traditionally, studies of AD pathology are usually inferred at the population level [65]. However,
as individual characteristics are becoming increasingly scrutinized, recent studies have emphasized
the need to consider the impact of individual differences on the group level [66]. The FC can be
modulated by individual characteristics [27,67,68], or untargeted cognitive processes that occur
with the task [32,33]. A recent study reported that individual variance contributed highly to
the FC variance [23]. Indeed, in our results, participant-wise WM FC also showed the highest
similarity to control FC. The variance makes the contribution of targeted cognitive processes
and group effects to FC variance relatively low. We were able to emphasize the inter-group
and personal traits by removing the unnecessary variance, which was not related to the task at
the participant level. Variance elimination in group classification showed a positive effect on
classification performance. This seems to be because irrelevant FC variance was reduced during
the FC refinement. In the case of the predictive model for participants’ cognitive scores, these
positive effects only appeared in a task-related cognitive domain prediction. This implies that
the cognitive processes caused by the task are reflected in the FC, which emphasizes objective
evidence of the cognitive abilities involved. It may provide some explanation for the predictive
performance improvement of the task-induced cognitive ability, which has been consistently
reported in recent studies [26,27]. Therefore, our results suggest that the refinement of the
WM-related network of PFC works as a better neuromarker by clarifying both cognitive process
information and group information related to the task.

4.3. fNIRS device provides clinical information for AD screening

The portable fNIRS device is intuitive and inexpensive [39,40], which can make it convenient
to be used as a disease screening device in local medical institutions. Therefore, many recent
studies have investigated whether the fNIRS could screen psychiatric diseases, such as major
depressive disorder [69] and attention deficit hyperactivity disorder [70]. As in this context, there
is an ongoing effort to screen for AD pathology [71]. However, no study has tried to predict the
performance of various cognitive domains and classify AD pathological groups simultaneously
with fNIRS. Our results suggest that the portable fNIRS device can provide a high classification
accuracy suitable for clinical AD screening. In this study, the classification model achieved
a three-class classification accuracy of 95.0%. Particularly, the pre-AD screening, which is a
classification between HC and MCI reached an accuracy of 99.3%. Our model’s performance
reached a performance level that is better than/similar to that of the three-class classification
accuracy reported by conventional fMRI research [72]. Additionally, we used the fNIRS data
to confirm the high prediction level of cognitive scores for individuals. These facts confirm
that fNIRS can provide continuous information on group classification and cognitive abilities,
increasing the possibility of fNIRS as a clinical screening tool in the future.

4.4. Alteration of FC by AD pathology is nonlinear

It is known that changes in the brain network caused by AD are nonlinear [73]. In particular, the
initial changes in MCI and AD do not change linearly with changes in cognitive ability [74]. We
found that the MCI group showed higher activation in the DMTS task than the other two groups.
Although not statistically significant, this trend was also maintained in the DST. In the case of FC,
the MCI and AD groups recruited some hyperconnectivity compared to milder AD pathology.
These results followed the consistently reported findings in activation [44,42,75], and functional
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connectivity [76,77], known as reward mechanisms. Compensation causes hyperactivation and
hyperconnectivity, while recruiting more brain regions to meet cognitive demand [62]. Combined
with degenerative brain disease, the compensatory mechanisms and decreased activity due to
structural disruption of the brain compete, leading to a non-linear relationship between cognitive
state and brain state [78]. In our suggested model, we confirmed that the prediction of cognitive
ability according to AD was more accurately predicted in nonlinear predictive models. This
suggests that in population-level predictions where nonlinear network changes occur, nonlinear
prediction contains more insight than linear prediction. The effect of nonlinear changes due to
the compensation mechanism is also seen in the classifier performance. MCI and AD could be
separated almost completely through ANN, which means that the WM network patterns of MCI
and AD are very different. Given the fact that the behavioral performances of the two groups
are not well-differentiated (p>0.05), these results may suggest that cognitive abilities could be
sustained by the compensatory mechanism produced by FC alterations.

4.5. Limitations

Although this study showed that the refined WM-related network is a useful AD neuromarker,
detailed analysis of important features in classification and nonlinear prediction of individual
characteristics have not yet been conducted. Analyzing these features would allow us to gather
more clinical evidence of the generalizable possibility of our models. Therefore, in future studies,
it is necessary to consider the weights of classification models and nonlinear regression models
to clarify changes in networks related to AD pathological conditions.

Additionally, our data were gathered from a small number of people per group compared to
the predictor variable. This can weaken the statistical power of network estimation. Thus, the
network was extracted without p correction. Therefore, in future studies, it is necessary to acquire
additional data to identify an accurate anatomical model of WM-related networks. Also, the
data used to train the model in this study were small and a bit biased towards specific groups.
Therefore, it is necessary to additionally recruit AD and MCI groups to prevent such bias.

5. Conclusions

We have shown that the WM-related network of the PFC is an appropriate neuromarker for AD
classification and cognitive score prediction. In identifying WM-related networks, removing
variances was important in classification and prediction. Furthermore, we confirmed the
credibility of a portable fNIRS device as a clinical instrument by achieving high classification
accuracy and personal characteristic prediction performance. This research could benefit many
potential Alzheimer’s patients by providing opportunities to improve their quality of future life.
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